10 CIRCLES

EXERCISE 10.1

Q.1. Fill in the blanks :

- (i) The centre of a circle lies in _____ of the circle. (exterior/ interior)
- (ii) A point, whose distance from the centre of a circle is greater than its radius lies in ______ of the circle. (exterior/interior)
- (iii) The longest chord of a circle is a _____ of the circle.
- (iv) An arc is a _____ when its ends are the ends of a diameter.
- (v) Segment of a circle is the region between an arc and ______ of the circle.
- (vi) A circle divides the plane, on which it lies in _____ parts.
- Sol. (i) interior (ii) exterior (iii) diameter (iv) semicircle (v) the chord (vi) three
- Q.2. Write True or False: Give reasons for your answers.
 - (i) Line segment joining the centre to any point on the circle is a radius of the circle.
 - (ii) A circle has only finite number of equal chords.
 - (iii) If a circle is divided into three equal arcs, each is a major arc.
 - (iv) A chord of a circle, which is twice as long as its radius, is a diameter of the circle.
 - (v) Sector is the region between the chord and its corresponding arc.
 - (vi) A circle is a plane figure.
- Sol. (i) True (ii) False (iii) False (iv) True (v) False (vi) True

EXERCISE 10.2

- **Q.1.** Recall that two circles are congruent if they have the same radii. Prove that equal chords of congruent circles subtend equal angles at their centres.
- **Sol.** Given : Two congruent circles with centres O and O'. AB and CD are equal chords of the circles with centres O and O' respectively.

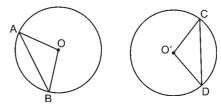
To Prove : $\angle AOB = \angle COD$

 $\ensuremath{\textbf{Proof}}$: In triangles AOB and COD,

AB = CD [Given]

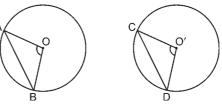
AO = CO' [Radii of congruent circle]

- BO = DO'
- $\Rightarrow \quad \Delta AOB \cong \Delta CO'D \qquad [SSS axiom]$
- $\Rightarrow \angle AOB \cong \angle CO'D$ **Proved.** [CPCT]



- **Q.2.** Prove that if chords of congruent circles subtend equal angles at their centres, then the chords are equal.
- Ans. Given : Two congruent circles with centres O and O'. AB and CD are chords of circles with centre O and O' respectively such that ∠AOB = ∠CO'D
 To Prove : AB = CD

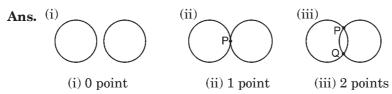
Proof : In triangles AOB and CO'D,



AO = CO' BO = DO' $AOB = \angle CO'D$ $AOB = \angle CO'D$ $AAOB \cong \triangle CO'D$ AB = CD Bactorian (CPCT) (Radii of congruent circle) (Radii of congruent circle)

EXERCISE 10.3

Q.1. Draw different pairs of circles. How many points does each pair have in common? What is the maximum number of common points?

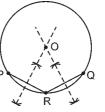


Maximum number of common points = 2 Ans.

Q.2. Suppose you are given a circle. Give a construction to find its centre.

Ans. Steps of Construction :

- 1. Take arc PQ of the given circle.
- 2. Take a point R on the arc PQ and draw chords PR and RQ.
- 3. Draw perpendicular bisectors of PR and RQ. These perpendicular bisectors intersect at point O. Hence, point O is the centre of the given circle.



- **Q.3.** If two circles intersect at two points, prove that their centres lie on the perpendicular bisector of the common chord.
- **Ans.** Given : AB is the common chord of two intersecting circles (O, r) and (O', r'). **To Prove :** Centres of both circles lie on the perpendicular bisector of chord AB, i.e., AB is bisected at right angle by OO'.

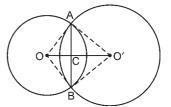
Construction : Join AO, BO, AO' and BO'. **Proof :** In $\triangle AOO'$ and $\triangle BOO'$ AO = OB (Radii of the circle (O, r)

AO' = BO' (Radii of the circle (O', r')) OO' = OO' (Common) ∴ $\triangle AOO' \cong \triangle BOO'$ (SSS congruency) ⇒ $\angle AOO' = \angle BOO'$ (CPCT)

Now in $\triangle AOC$ and $\triangle BOC$

$$AOC = BOC (AOO' = BOO')$$

- AO = BO (Radii of the circle (O, r))
 - OC = OC (Common)



 $\therefore \quad \Delta AOC \cong \Delta BOC \quad (SAS \text{ congruency}) \\ \Rightarrow \quad AC = BC \text{ and } \angle ACO = \angle BCO \quad ...(i) \quad (CPCT) \\ \Rightarrow \angle ACO + \angle BCO = 180^{\circ} \qquad ...(ii) \quad (Linear \text{ pair}) \\ \Rightarrow \angle ACO = \angle BCO = 90^{\circ} \quad (From (i) \text{ and } (ii)) \\ \text{Hence, OO' lie on the perpendicular bisector of AB.$ **Proved.** $}$

EXERCISE 10.4

Q.1. Two circles of radii 5 cm and 3 cm intersect at two points and the distance between their centres is 4 cm. Find the length of the common chord.
Sol. In AAOO'

Sol. In $\triangle AOO'$, $AO^2 = 5^2 = 25$ $AO'^2 = 3^2 = 9$ $OO'^2 = 4^2 = 16$ $AO'^2 + OO'^2 = 9 + 16 = 25 = AO^2$ $\Rightarrow \angle AO'O = 90^\circ$ [By converse of pythagoras theorem] Similarly, $\angle BO'O = 90^\circ$. $\Rightarrow \angle AO'B = 90^\circ + 90^\circ = 180^\circ$ $\Rightarrow AO'B$ is a straight line. whose mid-point is O.

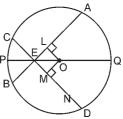
 \Rightarrow AB = (3 + 3) cm = 6 cm Ans.

A 31 5 31 5 4 310/ 315 B

- **Q.2.** If two equal chords of a circle intersect within the circle, prove that the segments of one chord are equal to corresponding segments of the other chord.
- Sol. Given : AB and CD are two equal chords of a circle which meet at E. **To prove :** AE = CE and BE = DE**Construction :** Draw OM \perp AB and ON \perp CD and join OE. **Proof** : In $\triangle OME$ and $\triangle ONE$ OM = ON [Equal chords are equidistant] OE = OE[Common] $\angle OME = \angle ONE$ [Each equal to 90°] $\Delta OME \cong \Delta ONE$ [RHS axiom] *.*.. EM = EN \Rightarrow ...(i) [CPCT] AB = CDNow [Given] $\frac{1}{2}$ AB = $\frac{1}{2}$ CD \Rightarrow AM = CN \Rightarrow ..(ii) [Perpendicular from centre bisects the chord] Adding (i) and (ii), we get EM + AM = EN + CNAE = CE \Rightarrow ..(iii) Now, AB = CD..(iv) $\Rightarrow AB - AE = CD - AE$ [From (iii)] BE = CD - CE **Proved.** \Rightarrow
- **Q.3.** If two equal chords of a circle intersect within the circle, prove that the line joining the point of intersection to the centre makes equal angles with the chords.
- **Sol.** Given : AB and CD are two equal chords of a circle which meet at E within the circle and a line PQ joining the point of intersection to the centre.

To Prove : $\angle AEQ = \angle DEQ$

Construction : Draw OL \perp AB and OM \perp CD.**Proof :** In \triangle OLE and \triangle OME, we haveOL = OM [Equal chords are equidistant]OE = OE \angle OLE = \angle OME \angle OLE = \angle OME \therefore \triangle OLE \cong \triangle OME[RHS congruence] \Rightarrow \angle LEO = \angle MEO[CPCT]



М

Q.4. If a line intersects two concentric circles (circles with the same centre) with centre O at A, B, C and D, prove that AB = CD (see Fig.)

Sol. Given : A line AD intersects two concentric circles at A, B, C and D, where O is the centre of these circles.
To prove : AB = CD
Construction : Draw OM ⊥ AD.
Proof : AD is the chord of larger circle.
∴ AM = DM ..(i) [OM bisects the chord]
BC is the chord of smaller circle
∴ BM = CM ..(ii) [OM bisects the chord]
Subtracting (ii) from (i), we get
AM - BM = DM - CM
⇒ AB = CD Proved.

Q.5. Three girls Reshma, Salma and Mandip are playing a game by standing on a circle of radius 5 m drawn in a park. Reshma throws a ball to Salma, Salma to Mandip, Mandip to Reshma. If the distance between Reshma and Salma and between Salma and Mandip is 6 m each, what is the distance between Reshma and Mandip?

Sol. Let Reshma, Salma and Mandip be represented by R, S and M respectively. Draw OL \perp RS, $OL^2 = OR^2 - RL^2$ $OL^2 = 5^2 - 3^2$ [RL = 3 m, because OL \perp RS] = 25 - 9 = 16 $OL = \sqrt{16} = 4$ Now, area of triangle ORS $= \frac{1}{2} \times KR \times 05$ $= \frac{1}{2} \times KR \times 05$ Also, area of $\triangle ORS = \frac{1}{2} \times RS \times OL = \frac{1}{2} \times 6 \times 4 = 12 \text{ m}^2$ $\Rightarrow \frac{1}{2} \times KR \times 5 = 12$ $\Rightarrow KR = \frac{12 \times 2}{5} = \frac{24}{5} = 4.8 \text{ m}$ $\Rightarrow RM = 2KR$ $\Rightarrow RM = 2 \times 4.8 = 9.6 \text{ m}$ Hence, distance between Reshma and Mandip is 9.6 m Ans.

84

Q.6. A circular park of radius 20 m is situated in a colony. Three boys Ankur, Syed and David are siting at equal distance on its boundary each having a toy telephone in his hands to talk each other. Find the length of the string of each phone.

Sol. Let Ankur, Syed and David be represented by A, S
and D respectively.
Let PD = SP = SQ = QA = AR = RD = x
In
$$\triangle OPD$$
,
 $OP^2 = 400 - x^2$
 $\Rightarrow OP = \sqrt{400 - x^2}$
 $\Rightarrow AP = 2\sqrt{400 - x^2} + \sqrt{400 - x^2}$
[:: centroid divides the median in the ratio 2 : 1]
 $= 3\sqrt{400 - x^2}$
Now, in $\triangle APD$,
PD² = AD² - DP²
 $\Rightarrow x^2 = (2x)^2 - (\sqrt[3]{400 - x^2})^2$
 $\Rightarrow x^2 = 4x^2 - 9(400 - x^2)$
 $\Rightarrow x^2 = 4x^2 - 3600 + 9x^2$
 $\Rightarrow 12x^2 = 3600$
 $\Rightarrow x^2 = \frac{3600}{12} = 300$
 $\Rightarrow x = 10\sqrt{3}$
Now, SD = $2x = 2 \times 10\sqrt{3} = 20\sqrt{3}$
 \therefore ASD is an equilateral triangle.
 \Rightarrow SD = AS = AD = $20\sqrt{3}$
Hence, length of the string of each phone is $20\sqrt{3}$ m Ans.

EXERCISE 10.5

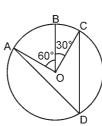
- **Q.1.** In the figure, A, B and C are three points on a circle with centre O such that $\angle BOC = 30^{\circ}$ and $\angle AOB = 60^{\circ}$. If D is a point on the circle other than the arc ABC, find $\angle ADC$.
- **Sol.** We have, $\angle BOC = 30^{\circ}$ and $\angle AOB = 60^{\circ}$ $\angle AOC = \angle AOB + \angle BOC = 60^{\circ} + 30^{\circ} = 90^{\circ}$

We know that angle subtended by an arc at the centre of a circle is double the angle subtended by the same arc on the remaining part of the circle.

$$\therefore 2 \angle ADC = \angle AOC$$

$$\Rightarrow \angle ADC = \frac{1}{2} \angle AOC = \frac{1}{2} \times 90^{\circ} \Rightarrow \angle ADC = 45^{\circ} \text{ Ans.}$$

Q.2. A chord of a circle is equal to the radius of the circle. Find the angle subtended by the chord at a point on the minor arc and also at a point on the major arc.



Sol. We have, OA = OB = AB

Therefore, $\triangle OAB$ is a equilateral triangle.

 $\Rightarrow \angle AOB = 60^{\circ}$

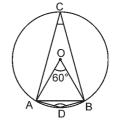
We know that angle subtended by an arc at the centre of a circle is double the angle subtended by the same arc on the remaining part of the circle.

$$\therefore \quad \angle AOB = 2\angle ACB$$

$$\Rightarrow \quad \angle ACB = \frac{1}{2} \angle AOB = \frac{1}{2} \times 60^{\circ}$$

$$\Rightarrow \quad \angle ACB = 30^{\circ}$$
Also, $\angle ADB = \frac{1}{2}$ reflex $\angle AOB$

$$= \frac{1}{2} (360^{\circ} - 60^{\circ}) = \frac{1}{2} \times 300^{\circ} = \frac{1}{2} \times 30^{\circ} =$$



Hence, angle subtended by the chord at a point on the minor arc is 150° and at a point on the major arc is 30° Ans.

 150°

Q.3. In the figure, $\angle PQR = 100^\circ$, where P, Q and R are points on a circle with centre O. Find $\angle OPR$.

Sol. Reflex angle POR = $2 \angle PQR$ $= 2 \times 100^{\circ} = 200^{\circ}$ Now, angle POR = $360^{\circ} - 200 = 160^{\circ}$ PO = ORAlso, [Radii of a circle] $\angle OPR = \angle ORP$ *.*.. [Opposite angles of isosceles triangle] In $\triangle OPR$, $\angle POR = 160^{\circ}$ $\angle OPR = \angle ORP = 10^{\circ}$ ·•. [Angle sum property of a triangle]. Ans. **Q.4.** In the figure, $\angle ABC = 69^\circ$, $\angle ACB = 31^\circ$, find $\angle BDC$. **Sol.** In $\triangle ABC$, we have $\angle ABC + \angle ACB + \angle BAC = 180^{\circ}$ [Angle sum property of a triangle] $69^{\circ} + 31^{\circ} + \angle BAC = 180^{\circ}$ \Rightarrow 69 31 $\angle BAC = 180^{\circ} - 100^{\circ} = 80^{\circ}$ \Rightarrow B Also, $\angle BAC = \angle BDC$ [Angles in the same segment] $\angle BDC = 80^{\circ}$ Ans. Q.5. In the figrue, A, B, C and D are four points on a circle. AC and BD intersect at a point E such that $\angle BEC = 130^{\circ}$ and $\angle ECD = 20^{\circ}$. Find $\angle BAC.$ Sol. $\angle BEC + \angle DEC = 180^{\circ}$ [Linear pair] \Rightarrow 130° + \angle DEC = 180° $\angle DEC = 180^{\circ} - 130^{\circ} = 50^{\circ}$ \Rightarrow Now, in $\triangle DEC$, R $\Rightarrow \angle \text{DEC} + \angle \text{DCE} + \angle \text{CDE} = 180^{\circ}$ [Angle sum property of a triangle] $\Rightarrow 50^{\circ} + 20^{\circ} + \angle \text{CDE} = 180^{\circ}$ $\angle CDE = 180^{\circ} - 70^{\circ} = 110^{\circ}$ \Rightarrow $\angle CDE = \angle BAC$ [Angles in same segment] Also, $\angle BAC = 110^{\circ}$ Ans. \Rightarrow

Q.6. ABCD is a cyclic quadrilateral whose diagonals intersect at a point E. If $\angle DBC = 70^\circ$, $\angle BAC = 30^\circ$, find $\angle BCD$. Further, if AB = BC, find $\angle ECD$. **Sol.** \angle CAD = \angle DBC= 70° [Angles in the same segment] Therefore, $\angle DAB = \angle CAD + \angle BAC$ $= 70^{\circ} + 30^{\circ} = 100^{\circ}$ But, $\angle DAB + \angle BCD = 180^{\circ}$ 30 [Opposite angles of a cyclic quadrilateral] $\angle BCD = 180^{\circ} - 100^{\circ} = 80^{\circ}$ 70 So, Now, we have AB = BCTherefore, $\angle BCA = 30^{\circ}$ [Opposite angles of an isosceles triangle] Again, $\angle DAB + \angle BCD = 180^{\circ}$ [Opposite angles of a cyclic quadrilateral] $\Rightarrow 100^{\circ} + \angle BCA + \angle ECD = 180^{\circ}$ [:: $\angle BCD = \angle BCA + \angle ECD$] $\Rightarrow 100^{\circ} + 30^{\circ} + \angle ECD = 180^{\circ}$ \Rightarrow 130° + \angle ECD = 180° $\Rightarrow \angle \text{ECD} = 180^{\circ} - 130^{\circ} = 50^{\circ}$ Hence, $\angle BCD = 80^{\circ}$ and $\angle ECD = 50^{\circ}$ Ans. **Q.7.** If diagonals of a cyclic quadrilateral are diameters of the circle through the vertices of the quadrilateral, prove that it is a rectangle. Sol. Given : ABCD is a cyclic quadrilateral, whose diagonals AC and BD are diameter of the circle passing through A, B, C and D. To Prove : ABCD is a rectangle. **Proof** : In $\triangle AOD$ and $\triangle COB$ AO = CO[Radii of a circle] OD = OB[Radii of a circle] ∠AOD = ∠COB [Vertically opposite angles] $\triangle AOD \cong \triangle COB$ [SAS axiom] $\angle OAD = \angle OCB$ [CPCT] ·. But these are alternate interior angles made by the transversal AC, intersecting AD and BC. : AD || BC Similarly, $AB \parallel CD$. Hence, quadrilateral ABCD is a parallelogram. Also, $\angle ABC = \angle ADC$ [Opposite angles of a ||gm are equal] ..(i) And, $\angle ABC + \angle ADC = 180^{\circ} \dots (ii)$ [Sum of opposite angles of a cyclic quadrilateral is 180°] $\Rightarrow \angle ABC = \angle ADC = 90^{\circ}$ [From (i) and (ii)] \therefore ABCD is a rectangle. [A ||gm one of whose angles is 90° is a rectangle] **Proved. Q.8.** If the non-parallel sides of a trapezium are equal, prove that it is cyclic. **Sol.** Given : A trapezium ABCD in which AB || CD and AD = BC. To Prove : ABCD is a cyclic trapezium. **Construction :** Draw DE \perp AB and CF \perp AB. **Proof** : In \triangle DEA and \triangle CFB, we have AD = BC[Given]

 $\angle DEA = \angle CFB = 90^{\circ}$ [DE \perp AB and CF \perp AB]

DE = CF[Distance between parallel lines remains constant] $\Delta DEA \cong \Delta CFB$ [RHS axiom](i) [CPCT] $\angle A = \angle B$ \Rightarrow and, $\angle ADE = \angle BCF$ [CPCT] ..(ii) Since, $\angle ADE = \angle BCF$ [From (ii)] $\angle ADE + 90^\circ = \angle BCF + 90^\circ$ \Rightarrow $\angle ADE + \angle CDE = \angle BCF + \angle DCF$ \Rightarrow $\angle D = \angle C$ \Rightarrow ..(iii) $[\angle ADE + \angle CDE = \angle D, \angle BCF + \angle DCF = \angle C]$ $\therefore \angle A = \angle B$ and $\angle C = \angle D$ [From (i) and (iii)] (iv) $\angle A + \angle B + \angle C + \angle D = 360^{\circ}$ [Sum of the angles of a quadrilateral is 360°] $\Rightarrow 2(\angle B + \angle D) = 360^{\circ}$ [Using (iv)] $\Rightarrow \angle B + \angle D = 180^{\circ}$ \Rightarrow Sum of a pair of opposite angles of quadrilateral ABCD is 180°. \Rightarrow ABCD is a cyclic trapezium **Proved.** Q.9. Two circles intersect at two points B and C. Through B, two line segments ABD and PBQ are drawn to intersect the circles at A, D and P, Q respectively (see Fig.). Prove that $\angle ACP = \angle QCD$. Sol. Given : Two circles intersect at two points B and C. Through B, two line segments ABD and PBQ are drawn to intersect the circles at A, D and P, Q respectively. **To Prove :** $\angle ACP = \angle QCD$. **Proof** : $\angle ACP = \angle ABP$...(i) [Angles in the same segment] $\angle QCD = \angle QBD$..(ii) [Angles in the same segment] But, $\angle ABP = \angle QBD$..(iii) [Vertically opposite angles] By (i), (ii) and (ii) we get $\angle ACP = \angle QCD$ **Proved. Q.10.** If circles are drawn taking two sides of a triangle as diameters, prove that the point of intersection of these circles lie on the third side. Sol. Given : Sides AB and AC of a triangle ABC are diameters of two circles which intersect at D. To Prove : D lies on BC. Proof : Join AD $\angle ADB = 90^{\circ}$...(i) [Angle in a semicircle] $\angle ADC = 90^{\circ}$ Also, ..(ii) Adding (i) and (ii), we get $\angle ADB + \angle ADC = 90^{\circ} + 90^{\circ}$ $\angle ADB + \angle ADC = 180^{\circ}$ \Rightarrow \Rightarrow BDC is a straight line. \therefore D lies on BC Hence, point of intersection of circles lie on the third side BC. Proved. **Q.11.** ABC and ADC are two right triangles with common hypotenuse AC. Prove

Sol. Given : ABC and ADC are two right triangles with common hypotenuse AC. To Prove : ∠CAD = ∠CBD

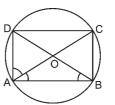
that $\angle CAD = \angle CBD$.

88

Proof: Let O be the mid-point of AC.

Then OA = OB = OC = OD

Mid point of the hypotenuse of a right triangle is equidistant from its vertices with O as centre and radius equal to OA, draw a circle to pass through A, B, C and D.



We know that angles in the same segment of a circle are equal.

Since, \angle CAD and \angle CBD are angles of the same segment. Therefore, \angle CAD = \angle CBD. **Proved.**

Sol. Given : ABCD is a cyclic parallelogram.

To prove : ABCD is a rectangle.

Proof : $\angle ABC = \angle ADC$...(i)

[Opposite angles of a ||gm are equal]

But, $\angle ABC + \angle ADC = 180^{\circ}$... (ii)

[Sum of opposite angles of a cyclic quadrilateral is 180°]

 $\Rightarrow \angle ABC = \angle ADC = 90^{\circ}$ [From (i) and (ii)]

 \therefore ABCD is a rectangle

[A ||gm one of whose angles is 90° is a rectangle] Hence, a cyclic parallelogram is a rectangle. **Proved.**

EXERCISE 10.6 (Optional)

- Q.1. Prove that the line of centres of two intersecting circles subtends equal angles at the two points of intersection.
- **Sol. Given :** Two intersecting circles, in which OO' is the line of centres and A and B are two points of intersection.

To prove : $\angle OAO' = \angle OBO'$

...

 \Rightarrow

Construction : Join AO, BO, AO' and BO'.

Proof : In $\triangle AOO'$ and $\triangle BOO'$, we have

AO = BO	[Radii of the same circle]
AO' = BO'	[Radii of the same circle]
00' - 00'	[Common]

$$OO = OO [Common]$$

- $\Delta AOO' \cong \Delta BOO'$ [SSS axiom]
- $\angle OAO' = \angle OBO'$ [CPCT]

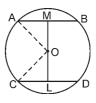
Hence, the line of centres of two intersecting circles subtends equal angles at the two points of intersection. **Proved.**

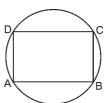
- **Q.2.** Two chords AB and CD of lengths 5 cm and 11 cm respectively of a circle are parallel to each other and are on opposite sides of its centre. If the distance between AB and CD is 6 cm, find the radius of the circle.
- Sol. Let O be the centre of the circle and let its radius be r cm.

Draw OM \perp AB and OL \perp CD.

Then, $AM = \frac{1}{2}AB = \frac{5}{2}$ cm and, $CL = \frac{1}{2}CD = \frac{11}{2}$ cm

Since, $AB \parallel CD$, it follows that the points O, L, M are





collinear and therefore, LM = 6 cm. Let OL = x cm. Then OM = (6 - x) cm Join OA and OC. Then OA = OC = r cm. Now, from right-angled $\triangle OMA$ and $\triangle OLC$, we have $OA^2 = OM^2 + AM^2$ and $OC^2 = OL^2 + CL^2$ [By Pythagoras Theorem] $\Rightarrow r^2 = (6 - x)^2 + \left(\frac{5}{2}\right)^2$...(i) and $r^2 = x^2 + \left(\frac{11}{2}\right)^2$...(ii) $\Rightarrow (6 - x)^2 + \left(\frac{5}{2}\right)^2 = x^2 + \left(\frac{11}{2}\right)^2$ [From (i) and (ii)] $\Rightarrow 36 + x^2 - 12x + \frac{25}{4} = x^2 + \frac{121}{4}$ $\Rightarrow -12x = \frac{121}{4} - \frac{25}{4} - 36$ $\Rightarrow -12x = \frac{96}{4} - 36$ $\Rightarrow -12x = 24 - 36$ $\Rightarrow -12x = -12$ \Rightarrow x = 1Substituting x = 1 in (i), we get $r^2 = (6 - x)^2 + \left(\frac{5}{2}\right)^2$ $\Rightarrow r^2 = (6 - 1)^2 + \left(\frac{5}{2}\right)^2$ $\Rightarrow r^2 = (5)^2 + \left(\frac{5}{2}\right)^2 = 25 + \frac{25}{4}$ $\Rightarrow r^2 = \frac{125}{r}$

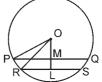
$$\Rightarrow r = \frac{\frac{4}{5\sqrt{5}}}{2}$$

Hence, radius $r = \frac{5\sqrt{5}}{2}$ cm. Ans.

Q.3. The lengths of two parallel chords of a circle are 6 cm and 8 cm. If the smaller chord is at distance 4 cm from the centre, what is the distance of the other chord from the centre?

Sol. Let PQ and RS be two parallel chords of a circle with centre O. We have, PQ = 8 cm and RS = 6 cm. Draw perpendicular bisector OL of RS which meets PQ in M. Since, PQ || RS, therefore, OM is also perpendicular bisector of PQ. Also, OL = 4 cm and RL = $\frac{1}{2}$ RS \Rightarrow RL = 3 cm and PM = $\frac{1}{2}$ PQ \Rightarrow PM = 4 cm In $\triangle ORL$, we have

 $OR^2 = RL^2 + OL^2$ [Pythagoras theorem]



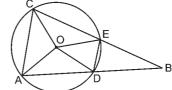
 $\Rightarrow OR^{2} = 3^{2} + 4^{2} = 9 + 16$ $\Rightarrow OR^{2} = 25 \Rightarrow OR = \sqrt{25}$ $\Rightarrow OR = 5 \text{ cm}$ $\therefore OR = OP \qquad [Radii of the circle]$ $\Rightarrow OP = 5 \text{ cm}$ Now, in $\triangle OPM$ $OM^{2} = OP^{2} - PM^{2} \qquad [Pythagoras theorem]$ $\Rightarrow OM^{2} = 5^{2} - 4^{2} = 25 - 16 = 9$

 $OM = \sqrt{9} = 3 cm$

Hence, the distance of the other chord from the centre is 3 cm. Ans.

- **Q.4.** Let the vertex of an angle ABC be located outside a circle and let the sides of the angle intersect equal chords AD and CE with the circle. Prove that \angle ABC is equal to half the difference of the angles subtended by the chords AC and DE at the centre.
- **Sol.** Given : Two equal chords AD and CE of a circle with centre O. When meet at B when produced.

To Prove : $\angle ABC = \frac{1}{2}(\angle AOC - \angle DOE)$



Proof : Let $\angle AOC = x$, $\angle DOE = y$, $\angle AOD = z$ $\angle EOC = z$ [Equal chords subtends equal angles at the centre] $\therefore x + y + 2z = 36^{\circ}$ [Angle at a point] .. (i) $OA = OD \implies \angle OAD = \angle ODA$ \therefore In DOAD, we have $\angle OAD + \angle ODA + z = 180^{\circ}$ $[:: \angle OAD = \angle OBA]$ $\Rightarrow 2 \angle \text{OAD} = 180^\circ - z$ $\Rightarrow \angle \text{OAD} = 90^\circ - \frac{z}{2}$... (ii) Similarly $\angle OCE = 90^\circ - \frac{z}{2}$... (iii) $\Rightarrow \angle \text{ODB} = \angle \text{OAD} + \angle \text{ODA}$ [Exterior angle property] $\Rightarrow \angle OEB = 90^{\circ} - \frac{z}{2} + z$ [From (ii)] $\Rightarrow \angle \text{ODB} = 90^\circ + \frac{z}{2}$... (iv) Also, $\angle OEB = \angle OCE + \angle COE$ [Exterior angle property] $\Rightarrow \angle OEB = 90^{\circ} - \frac{z}{2} + z$ [From (iii)] $\Rightarrow \angle OEB = 90^\circ + \frac{z}{2}$... (v)

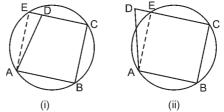
Also,
$$\angle OED = \angle ODE = 90^{\circ} - \frac{y}{2}$$
 ... (vi)
O from (iv), (v) and (vi), we have
 $\angle BDE = \angle BED = 90^{\circ} + \frac{z}{2} - \left(90^{\circ} - \frac{y}{2}\right)$
 $\Rightarrow \angle BDE = \angle BED = \frac{y+z}{2}$
 $\Rightarrow \angle BDE = \angle BED = y+z$... (vii)
 $\therefore \angle BDE = 180^{\circ} - (y+z)$... (viii)
 $\Rightarrow \angle ABC = 180^{\circ} - (y+z)$... (viii)
Now, $\frac{y-z}{2} = \frac{360^{\circ} - y - 2z - y}{2} = 180^{\circ} - (y+z)$... (ix)
From (viii) and (ix), we have

$$\angle ABC = \frac{x-y}{2}$$
 Proved.

- **Q.5.** Prove that the circle drawn with any side of a rhombus as diameter, passes through the point of intersection of its diagonals.
- Sol. Given : A rhombus ABCD whose diagonals intersect each other at O. To prove : A circle with AB as diameter passes through O. Proof : $\angle AOB = 90^{\circ}$ [Diagonals of a rhombus bisect each other at 90°] $\Rightarrow \triangle AOB$ is a right triangle right angled at O. $\Rightarrow AB$ is the hypotenuse of A B right $\triangle AOB$. \Rightarrow If we draw a circle with AB as diameter, then it will pass through O. because angle is a semicircle is 90° and $\angle AOB = 90^{\circ}$ Proved.
- **Q.6.** ABCD is a parallelogram. The circle through A, B and C intersect CD (produced if necessary) at E. Prove that AE = AD.
- Sol. Given : ABCD is a parallelogram.

To Prove : AE = AD. **Construction :** Draw a circle which passes through ABC and intersect CD (or CD produced) at E.

Proof : For fig (i)



 $\angle AED + \angle ABC = 180^{\circ}$ [Linear pair] ... (ii)
But $\angle ACD = \angle ADC = \angle ABC + \angle ADE$ $\Rightarrow \angle ABC + \angle ADE = 180^{\circ}$ [From (ii)] ... (iii)
From (i) and (iii) $\angle AED + \angle ABC = \angle ABC + \angle ADE$ $\Rightarrow \angle AED = \angle ADE$

 $\Rightarrow \qquad \angle AD = \angle AE \qquad [Sides opposite to equal angles are equal]$ Similarly we can prove for Fig (ii) **Proved.**

- **Q.7.** AC and BD are chords of a circle which bisect each other. Prove that (i) AC and BD are diameters, (ii) ABCD is rectangle.
- Sol. Given : A circle with chords AB and CD which bisect each other at O. **To Prove :** (i) AC and BD are diameters (ii) ABCD is a rectangle. **Proof** : In $\triangle OAB$ and $\triangle OCD$, we have OA = OC[Given] OB = OD[Given] ∠AOB = ∠COD [Vertically opposite angles] $\triangle AOB \cong \angle COD$ [SAS congruence] \Rightarrow $\angle ABO = \angle CDO \text{ and } \angle BAO = \angle BCO$ [CPCT] \Rightarrow ... (i) \Rightarrow AB || DC Similarly, we can prove BC || AD ... (ii) Hence, ABCD is a parallelogram. But ABCD is a cyclic parallelogram. \therefore ABCD is a rectangle. [Proved in Q. 12 of Ex. 10.5] $\angle ABC = 90^{\circ} \text{ and } \angle BCD = 90^{\circ}$ \Rightarrow AC is a diameter and BD is a diameter \Rightarrow [Angle in a semicircle is 90°] **Proved.**
- **Q.8.** Bisectors of angles A, B and C of a triangle ABC intersect its circumcircle at D, E and F respectively. Prove that the angles of the triangle DEF are

$$90^{\circ} - \frac{1}{2}A, \ 90^{\circ} - \frac{1}{2}B \ and \ 90^{\circ} - \frac{1}{2}C$$

Sol. Given : △ABC and its circumcircle. AD, BE, CF are bisectors of ∠A, ∠B, ∠C respectively.
Construction : Join DE, EF and FD.

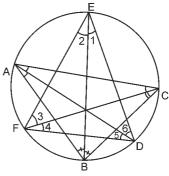
Proof : We know that angles in the same segment are equal.

$$\therefore \qquad \angle 5 = \frac{\angle C}{2} \text{ and } \angle 6 = \frac{\angle B}{2} \quad ..(i)$$
$$\angle 1 = \frac{\angle A}{2} \text{ and } \angle 2 = \frac{\angle C}{2} \quad ..(ii)$$
$$\angle 4 = \frac{\angle A}{2} \text{ and } \angle 3 = \frac{\angle B}{2} \quad ..(iii)$$

From (i), we have

$$\angle 5 + \angle 6 = \frac{\angle C}{2} + \frac{\angle B}{2}$$
$$\Rightarrow \qquad \angle D = \frac{\angle C}{2} + \frac{\angle B}{2} \qquad \dots \text{(iv)}$$

But $\angle A + \angle B + \angle C = 180^{\circ}$ $\Rightarrow \qquad \angle B + \angle C = 180^{\circ} - \angle A$



 $[\because \angle 5 + \angle 6 = \angle D]$

$$\begin{array}{l} \Rightarrow \qquad \frac{\angle B}{2} + \frac{\angle C}{2} = 90^{\circ} - \frac{\angle A}{2} \\ \therefore \ (iv) \ becomes, \\ \angle D = 90^{\circ} - \frac{\angle A}{2} \\ \text{Similarly, from (ii) and (iii), we can prove that} \\ \angle E = 90^{\circ} - \frac{\angle B}{2} \ \text{and} \ \angle F = 90^{\circ} - \frac{\angle C}{2} \ \text{Proved.} \end{array}$$

- **Q.9.** Two congruent circles intersect each other at points A and B. Through A any line segment PAQ is drawn so that P, Q lie on the two circles. Prove that BP = BQ.
- **Sol.** Given : Two congruent circles which intersect at A and B. PAB is a line through A.

To Prove : BP = BQ.

Construction : Join AB. **Proof :** AB is a common chord of both the circles. But the circles are congruent —

 \Rightarrow arc ADB = arc AEB

- $\Rightarrow \angle APB = \angle AQB$ Angles subtended
- \Rightarrow BP = BQ [Sides opposite to equal angles are equal] **Proved.**
- **Q.10.** In any triangle ABC, if the angle bisector of $\angle A$ and perpendicular bisector of BC intersect, prove that they intersect on the circumcircle of the triangle ABC.
- **Sol.** Let angle bisector of $\angle A$ intersect circumcircle of $\triangle ABC$ at D. Join DC and DB.

 $\angle BCD = \angle BAD$

[Angles in the same segment]

 $\Rightarrow \angle \text{BCD} = \angle \text{BAD} \ \frac{1}{2} \ \angle \text{A}$

[AD is bisector of $\angle A$] ...(i)

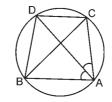
Similarly $\angle DBC = \angle DAC \frac{1}{2} \angle A \qquad \dots (ii)$

From (i) and (ii) $\angle DBC = \angle BCD$

 \Rightarrow BD = DC [sides opposite to equal angles are equal]

 \Rightarrow D lies on the perpendicular bisector of BC.

Hence, angle bisector of $\angle A$ and perpendicular bisector of BC intersect on the circumcircle of $\triangle ABC$ **Proved.**



11 CONSTRUCTIONS

EXERCISE 11.1

Q.1. Construct an angle of 90° at the initial point of a given ray and justify the construction.

Steps of Construction

- (i) Let us take a ray AB with initial point A.
- (ii) Taking A as centre and some radius, draw an arc of a circle, which intersects AB at C.
- (iii) With C as centre and the same radius as before, draw an arc, intersecting the previous arc at E.
- (iv) With E as centre and the same radius, as before, draw an arc, which intersects the arc drawn in step (ii) at F.
- (v) With E as centre and some radius, draw an arc.
- (vi) With F as centre and the same radius as before, draw another arc, intersecting the previous arc at G.
- (vii) Draw the ray AG. Then \angle BAG is the required angle of 90°.

Justification : Join AE, CE, EF, FG and GE AC = CE = AE[By construction] $\Rightarrow \Delta ACE$ is an equilateral triangle $\Rightarrow \angle CAE = 60^{\circ}$... (i) Similarly, $\angle AEF = 60^{\circ}$... (ii) From (i) and (ii), FE || AC ... (iii) [Alternate angles are equal] Also, FG = EG[By construction] \Rightarrow G lies on the perpendicular bisector of EF $\Rightarrow \angle \text{GIE} = 90^{\circ}$... (iv) $\therefore \angle GAB = \angle GIE = 90^{\circ}$ [Corresponding angles] GF = GE[Arcs of equal radii]

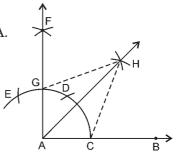
Q.2. Construct an angle of 45° at the initial point of a given ray and justify the construction.

Steps of Construction

- (i) Let us take a ray AB with initial point A.
- (ii) Draw $\angle BAF = 90^{\circ}$, as discussed in Q. 1.
- (iii) Taking C as centre and radius more

than $\frac{1}{2}$ CG, draw an arc.

(iv) Taking G as centre and the same radius as before, draw another arc, intersecting the previous arc at H.



₽

(v) Draw the ray AH. Then \angle BAH is the required angle of 45°.

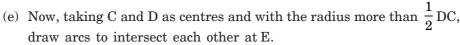
Justification : Join GH and CH. In $\triangle AHG$ and $\triangle AHC$, we have HG = HC[Arcs of equal radii] AG = AC[Radii of the same arc] AH = AH[Common] $\therefore \Delta AHG \cong \Delta AHC$ [SSS congruence] $\Rightarrow \angle HAG = \angle HAC$ [CPCT] ... (i) But \angle HAG + \angle HAC = 90° [By construction] ... (ii) $\Rightarrow \angle HAG = \angle HAC = 45^{\circ}$ [From (i) and (ii)]

Q.3. Construct the angles of the following measurements.

1 .

(*i*) 30° (*ii*)
$$22\frac{1}{2}$$
 (*iii*) 15°

- (i) Steps of Construction
 - (a) Draw a ray AB, with initial point A.
 - (b) With A as centre and some convenient radius, draw an arc, intersecting AB at C.
 - (c) With C as centre and the same radius as before, draw another arc, intersecting the previously drawn arc at D.
 - (d) Draw ray AD.

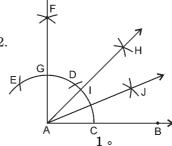


(f) Draw ray AE. Then $\angle BAE$ is the required angle of 30°.

(ii) Steps of Construction

- (a) Draw a ray AB with initial point A.
- (b) Draw \angle BAH = 45° as discussed in Q. 2.
- (c) Taking I and C as centres and with the radius more than $\frac{1}{2}$ CI, draw arcs

to intersect each other at J.



C

Ř

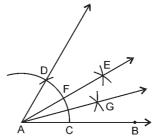
(d) Draw ray AJ. Then \angle BAJ is the required angle of $22\frac{1}{2}$

(iii) Steps of Construction

- (a) Draw $\angle BAE = 30^{\circ}$ as discussed in part (i).
- (b) Taking C and F as centres and with the

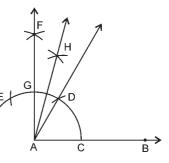
radius more than $\frac{1}{2}$ CF, draw arcs to intersect each other at G.

- (c) Draw ray AG. Then \angle BAG is the required angle of 15°.
- **Q.4.** Construct the following angles and verify by measuring them by a protractor.
 - (*i*) 75° (*ii*) 105° (*iii*) 135°



(i) Steps of Construction

- (a) Draw a ray AB with initial point A.
- (b) With A as centre and any convenient radius, draw an arc, intersecting AB at C.
- (c) With C as centre and the same radius, draw an arc, cutting the previous arc at D.
- (d) With D as centre and the same radius, draw another arc, cutting the arc drawn in step (b) at E.



- (e) With D and E as centres and some radius, draw arcs to intersect each other at F.
- (f) Draw ray AF and AD.
- (g) With D and G as centres, and radius more than $\frac{1}{2}$ GD, draw arcs to intersect. each other at H.
- (h) Draw ray AH. Then \angle BAH is the required angle of 75°. On measuring using a protractor, we find that \angle BAH = 75°.

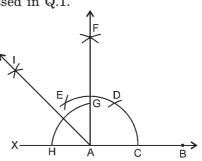
(ii) Steps of Construction

- (a) At A, draw an $\angle BAF = 90^{\circ}$, as discussed in Q. 1.
- (b) With A as centre and some convenient radius, draw an arc, intersecting AB at C.
- (c) With C as centre and the same radius, draw an arc, which cuts the precious arc at D.
- (d) With D as centre and the same radius, draw an arc, which cuts the arc drawn in step (b) at E.
- (e) Draw ray AE.
- (f) With G and E as centres and radius more than $\frac{1}{2}$ GE, draw arcs to intersect each other at H.
- (g) Join AH. Then \angle BAH is the required angle of 105°. On measuring using a protractor, we find that \angle BAH = 105°.

(iii) Steps of Construction

- (a) At A, draw angle $BAF = 90^\circ$, as discussed in Q.1.
- (b) Produce BA to X.
- (c) With A as centre and some convenient radius, draw an arc, which cuts AF and AX at G and H respectively.
- (d) With G and H as centres and radius

more than $\frac{1}{2}$ GH, draw arcs to intersect each other at I.



С

(e) Draw ray AI. Then \angle BAI is the required angle of 135°. On measuring using a protractor, we find that \angle BAI = 135°.

- Q.5. Construct an equilateral triangle, given its side and justify the construction.
 - (i) Steps of Construction
 - (i) Draw a line segment AB of given length.
 - (ii) With A and B as centres and radius equal to AB, draw arcs to intersect each other at C.
 - (iii) Join AC and BC. Then ABC is the required equilateral triangle.

[By construction] **Justification :** AB = AC [By construction]

AB = BC

 $\Rightarrow AB = AC = BC$

Hence, $\triangle ABC$ is an equilateral triangle.

EXERCISE 11.2

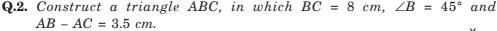
Q.1. Construct a triangle ABC in which BC = 7 cm, $\angle B = 75^{\circ}$ and AB + $AC = 13 \ cm.$

Steps of Construction

- (i) Draw a line segment BC = 7 cm.
- (ii) At B, draw $\angle CBX = 75^{\circ}$.
- (iii) Cut a line segment BD = 13 cm from BX.
- (iv) Join DC
- (v) Draw the perpendicular bisector LM of CD, which intersects BD at A.
- (vi) Join AC. Then ABC is the required triangle.

Justification : In \triangle ACD, we have

- AB = BD AD
- = BD AC
- $\Rightarrow AB + AC = BD$



Steps of Construction

- (i) Draw a line segment BC = 3.5 cm
- (ii) At B, draw $\angle CBX = 45^{\circ}$.
- (iii) From BX, cut off BD = 3.5 cm.
- (iv) Join DC.
- (v) Draw the perpendicular bisector LM of DC, which intersects BX at A. (vi) Join AC. Then ABC is the required triangle.

Justification : In \triangle ADC,

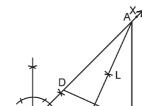
- AD = AC[A lies on the perpendicular bisector of DC]
- BD = AB AD

$$\Rightarrow$$
 BD = AB - AC

Q.3. Construct a triangle PQR in which QR = 6 cm, $\angle Q = 60^{\circ}$ and PR - PQ $= 2 \ cm.$

Steps of Construction

- (i) Draw a line segment QR = 6 cm
- (ii) At Q, draw $\angle RQX = 60^{\circ}$.



B

Мk

- (iii) Produce XQ to Y.
- (iv) Cut off QS = 2 cm from QY.
- (v) Join SR.
- (vi) Draw the perpendicular bisector LM of SR, which intersect QX at P.
- (vii) Join PR. Then PQR is the required triangle. **Justification :** In Δ PSR, we have
 - SP = PR [P lies on the perpendicular bisector of SR]

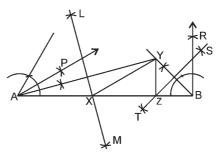
$$QS = PS - PQ$$

$$= PR - PQ$$

A KL

Q.4. Construct a $\triangle XYZ$ in which $\angle X = 30^\circ$, $\angle Z = 90^\circ$ and XY + YZ + ZX = 11 cm. Steps of Construction

- (i) Draw a line segment AB = 11 cm
- (ii) At A, draw $\angle BAP = 30^{\circ}$ and at B,
- draw $\angle ABR = 90^{\circ}$
- (iii) Draw the bisector of $\angle BAP$ and $\angle ABR$, which intersect each other at Y.
- (iv) Join AY and BY.
- (v) Draw the perpendicular bisectors LM and ST of AY and BY respectively. LM and ST intersect AB at X and Z respectively.



(vi) Join XY and YZ. Then XYZ is the required triangle.

Justification : In $\triangle AXY$, we have

AX = XY [X lies on the perpendicular bisector of AY] ...(i) ZB = YZSimilarly, ... (ii) \therefore XY + YZ + ZX = AX + ZB + ZX [From (i) and (ii)] = ABAX = AYFrom (i), $\angle XAY = \angle XYA$ [Angles opposite to equal \Rightarrow sides are equal] ... (iii) In $\triangle AXY$, $\angle YXZ = \angle XAY + \angle XYA$ [Exterior angle is equal to sum of interior opposite angles] $\angle YXZ = 2 \angle XAY$ \Rightarrow [From (iii)] $\angle YXZ = \angle XAP$ [:: AY bisects \angle XAP] \Rightarrow Similarly, $\angle YZX = \angle ZBR$.

Q.5. Construct a right triangle whose base is 12 cm and sum of its hypotenuse and other side is 18 cm. ▲

Steps of Construction

- (i) Draw a line segment AB = 12 cm.
- (ii) At A, draw $\angle BAX = 90^{\circ}$.
- (iii) From AX, cut off AD = 18 cm.
- (iv) Join DB.
- (v) Draw the perpendicular bisector LM of BD, which intersects AD at C.
- (vi) Join BC. Then $\triangle ABC$ is the required triangle.

